

Sunnybrow Primary Computing - Progression of Skills and Assessment Profile – Computer Science (Coding and Computational
Thinking)

Age Related Expectations
EYFS

Expectations
Year 1

Expectations
Year 2

Expectations
Year 3

Expectations
Year 4

Expectations
Year 5

Expectations
Year 6

Expectations
Beyond Year 6
Expectations

I can follow given
instructions to program a
physical device.

I can explain that an
algorithm is a set of
precise step-by-step
instructions to achieve a
particular task.

(Units 1.4, 1.5,
1.7)

I understand that
algorithms are
implemented on digital
devices as programs and
can identify examples of
each.

(Unit 2.1)

I can make a real-life
situation into an
algorithm for a program.

(Unit 3.1)

I can turn a real-life
situation to solve into an
algorithm, using a
diagram to express
solutions.

(Units 4.1, 4.5)

I can make more complex
real-life problems into
algorithms for a program.

(Unit 5.1)

I can turn a complex
programming task into an
algorithm.

(Unit 6.1)

Learn how to write code
using a text- based
language (e.g. Python,
Java, HTML).

I understand what an
algorithm is.

I know that an algorithm
written for a computer is
called a program.

(Units 1.4, 1.7)

I know I need to carefully
plan my algorithm so it
will work when I make it
into code.

(Unit 2.1)

I can design an algorithm
carefully, thinking about
what I want it to do and
how I can turn it into
code.

(Unit 3.1)

I can use repetition in my
code. For example, using
a loop that continues
until a condition is met
such as the correct
answer being entered.

(Unit 4.1)

I can test and debug my
programs as I work.

(Units 5.1, 5.5)

I can identify the
important aspects of a
programming task
(abstraction).

(Unit 6.1)

Describe different error
types (syntax and logical
bugs).

I can demonstrate an

ability to following an

algorithm.

I can work out what is

wrong when the steps are
out of order in
instructions.

(Units 1.4, 1.5)

I can design a simple

program (e.g. using
2Code) that achieves a
purpose.

 (Unit 2.1)

I can design a program

thinking logically about
the sequence of steps
required.

(Unit 3.1)

I can use timers within my

program designs more
accurately to create
repetition effects.

(Unit 4.1)

I can convert (translate)

algorithms that contain
sequence, selection and
repetition into code that
works.

(Unit 5.1)

I can decompose

important aspects of a
programming task in a
logical way, identifying
appropriate coding
structures that would
work.

(Unit 6.1)

Uses a range of operators

and expressions e.g.
Boolean and applies them
in the context of program
control.

I can design simple
algorithms.

I can say that if something
does not work how it
should, it is because my
code is incorrect.

(Unit 1.7)

I can find and correct
some errors in my
program (debugging).

(Unit 2.1)

I can experiment with
timers in my programs.

(Unit 3.1)

I can use selection
(decision) in my
programming. For
example, using an ‘if
statement’ for a question
being asked and the
program takes one of two
paths.

(Units 4.1)

I can use sequence,
selection, repetition, and
some other coding
structures in my code.

(Unit 5.1)

I can test and debug my
program as I work on it
and use logical methods
to identify a cause of a
bug.

(Unit 6.1)

I can detect and corrects
errors (debugging) in
simple algorithms.

I can try and fix my code if
it isn’t working properly
(debugging).

(Unit 1.7)

I can say what will happen
in a program.

(Unit 2.1)

I can experiment with the
effect of using repeat
commands.

(Unit 3.1)

I can use variables within
my program and know
how to change the value
of variables.

(Unit 4.1)

I can organise my code
carefully for example,
naming variables and
using tabs. I know this will
help me debug more
efficiently.

(Unit 5.1)

I can identify a specific
line of code that is
causing a problem in my
program and attempt a
fix.

(Unit 6.1)

 I can make good guesses
(logical reasoning) of
what is going to happen
in a program. For
example, where the Bee-
Bot might go.

(Units 1.5, 1.7)

I can spot something in a
program that has an
action or effect (does
something).

(Unit 2.1)

I can identify the
difference in using the
effect of a timer or repeat
command in my code.

(Unit 3.1)

I can use the user inputs
and output features
within my program, such
as ‘Print to screen’.

(Unit 4.1)

I can use logical methods
to identify the cause of
any bug with support to
identify the specific line of
code.

(Unit 5.1)

I can translate algorithms
that include sequence,
selection and repetition
into code and nest these
structures within each
other.

(Unit 6.1)

 I can identify an error in
my program and fix it.

(Unit 3.1)

I can identify errors in my
code by using different
methods, such as
steeping through lines of
code and fixing them.

(Unit 4.1)

 I can use inputs and
outputs within my coded
programs such as sound,
movement and buttons
and represent the state of
an object.

(Units 6.1, 6.7)

 I can read programs with
several steps and predict
what it will do.

(Unit 3.1)

I can read programs that
contain several steps and
predict the outcomes
with increasing accuracy.

(Unit 4.1)

 I can interpret
(understand) a program in
parts and can make
logical attempts to put
the separate parts
together in an algorithm
to explain the program as
a whole.

(Unit 6.1)

* Children should also understand and apply the vocabulary related to this strand of the curriculum for their year group.

Skills based on progression documents from 2Simple Software, CAS (Computing at School), Animate 2 Educate Ltd and Simon Haughton Computing

